skip to main content


Search for: All records

Creators/Authors contains: "Borer, Elizabeth T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A combination of theory and experiments predicts that increasing soil nutrients will modify herbivore and microbial impacts on ecosystem carbon cycling.

    However, few studies of herbivores and soil nutrients have measured both ecosystem carbon fluxes and carbon pools. Even more rare are studies manipulating microbes and nutrients that look at ecosystem carbon cycling responses.

    We added nutrients to a long‐term, experiment manipulating foliar fungi, soil fungi, mammalian herbivores and arthropods in a low fertility grassland. We measured gross primary production (GPP), ecosystem respiration (ER), net ecosystem exchange (NEE) and plant biomass throughout the growing season to determine how nutrients modify consumer impacts on ecosystem carbon cycling.

    Nutrient addition increased above‐ground biomass and GPP, but not ER, resulting in an increase in ecosystem carbon uptake rate. Reducing foliar fungi and arthropods increased plant biomass. Nutrients amplified consumer effects on plant biomass, such that arthropods and foliar fungi had a threefold larger impact on above‐ground biomass in fertilized plots.

    Synthesis. Our work demonstrates that throughout the growing season soil resources modify carbon uptake rates as well as animal and fungal impacts on plant biomass production. Taken together, ongoing nutrient pollution may increase ecosystem carbon uptake and drive fungi and herbivores to have larger impacts on plant biomass production.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. Chiang, Tzen-Yuh (Ed.)

    Eukaryotic hosts harbor tremendously diverse microbiomes that affect host fitness and response to environmental challenges. Fungal endophytes are prominent members of plant microbiomes, but we lack information on the diversity in functional traits affecting their interactions with their host and environment. We used two culturing approaches to isolate fungal endophytes associated with the widespread, dominant prairie grassAndropogon gerardiiand characterized their taxonomic diversity using rDNA barcode sequencing. A randomly chosen subset of fungi representing the diversity of each leaf was then evaluated for their use of different carbon compound resources and growth on those resources. Applying community phylogenetic analyses, we discovered that these fungal endophyte communities are comprised of phylogenetically distinct assemblages of slow- and fast-growing fungi that differ in their use and growth on differing carbon substrates. Our results demonstrate previously undescribed and cryptic functional diversity in carbon resource use and growth in fungal endophyte communities ofA.gerardii.

     
    more » « less
    Free, publicly-accessible full text available July 20, 2024
  3. Abstract

    Anthropogenic nutrient enrichment and shifts in herbivory can lead to dramatic changes in the composition and diversity of aboveground plant communities. In turn, this can alter seed banks in the soil, which are cryptic reservoirs of plant diversity. Here, we use data from seven Nutrient Network grassland sites on four continents, encompassing a range of climatic and environmental conditions, to test the joint effects of fertilization and aboveground mammalian herbivory on seed banks and on the similarity between aboveground plant communities and seed banks. We find that fertilization decreases plant species richness and diversity in seed banks, and homogenizes composition between aboveground and seed bank communities. Fertilization increases seed bank abundance especially in the presence of herbivores, while this effect is smaller in the absence of herbivores. Our findings highlight that nutrient enrichment can weaken a diversity maintaining mechanism in grasslands, and that herbivory needs to be considered when assessing nutrient enrichment effects on seed bank abundance.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Death is a common outcome of infection, but most disease models do not track hosts after death. Instead, these hosts disappear into a void. This assumption lacks critical realism, because dead hosts can alter host–pathogen dynamics. Here, we develop a theoretical framework of carbon‐based models combining disease and ecosystem perspectives to investigate the consequences of feedbacks between living and dead hosts on disease dynamics and carbon cycling. Because autotrophs (i.e. plants and phytoplankton) are critical regulators of carbon cycling, we developed general model structures and parameter combinations to broadly reflect disease of autotrophic hosts across ecosystems. Analytical model solutions highlight the importance of disease–ecosystem coupling. For example, decomposition rates of dead hosts mediate pathogen spread, and carbon flux between live and dead biomass pools are sensitive to pathogen effects on host growth and death rates. Variation in dynamics arising from biologically realistic parameter combinations largely fell along a single gradient from slow to fast carbon turnover rates, and models predicted higher disease impacts in fast turnover systems (e.g. lakes and oceans) than slow turnover systems (e.g. boreal forests). Our results demonstrate that a unified framework, including the effects of pathogens on carbon cycling, provides novel hypotheses and insights at the nexus of disease and ecosystem ecology.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  5. Abstract

    Eutrophication usually impacts grassland biodiversity, community composition, and biomass production, but its impact on the stability of these community aspects is unclear. One challenge is that stability has many facets that can be tightly correlated (low dimensionality) or highly disparate (high dimensionality). Using standardized experiments in 55 grassland sites from a globally distributed experiment (NutNet), we quantify the effects of nutrient addition on five facets of stability (temporal invariability, resistance during dry and wet growing seasons, recovery after dry and wet growing seasons), measured on three community aspects (aboveground biomass, community composition, and species richness). Nutrient addition reduces the temporal invariability and resistance of species richness and community composition during dry and wet growing seasons, but does not affect those of biomass. Different stability measures are largely uncorrelated under both ambient and eutrophic conditions, indicating consistently high dimensionality. Harnessing the dimensionality of ecological stability provides insights for predicting grassland responses to global environmental change.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  6. Abstract Causal effects of biodiversity on ecosystem functions can be estimated using experimental or observational designs — designs that pose a tradeoff between drawing credible causal inferences from correlations and drawing generalizable inferences. Here, we develop a design that reduces this tradeoff and revisits the question of how plant species diversity affects productivity. Our design leverages longitudinal data from 43 grasslands in 11 countries and approaches borrowed from fields outside of ecology to draw causal inferences from observational data. Contrary to many prior studies, we estimate that increases in plot-level species richness caused productivity to decline: a 10% increase in richness decreased productivity by 2.4%, 95% CI [−4.1, −0.74]. This contradiction stems from two sources. First, prior observational studies incompletely control for confounding factors. Second, most experiments plant fewer rare and non-native species than exist in nature. Although increases in native, dominant species increased productivity, increases in rare and non-native species decreased productivity, making the average effect negative in our study. By reducing the tradeoff between experimental and observational designs, our study demonstrates how observational studies can complement prior ecological experiments and inform future ones. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  7. Abstract

    Food has long been known to perform dual functions of nutrition and medicine, but mounting evidence suggests that complex host‐pathogen dynamics can emerge along continuous resource gradients. Empirical examples of nonmonotonic responses of infection with increasing host resources (e.g., low prevalence at low and high resource supply but high prevalence at intermediate resources) have been documented across the tree of life, but these dynamics, when observed, often are interpreted as nonintuitive, idiosyncratic features of pathogen and host biology. Here, by developing generalized versions of existing models of resource dependence for within‐ and among‐host infection dynamics, we provide a synthetic view of nonmonotonic infection dynamics. We demonstrate that where resources jointly impact two (or more) processes (e.g., growth, defense, transmission, mortality, predation), nonmonotonic infection dynamics, including alternative states, can emerge across a continuous resource supply gradient. We review the few empirical examples that concurrently measured resource effects on multiple rates and pair this with a wide range of examples in which resource dependence of multiple rates could generate nonmonotonic infection outcomes under realistic conditions. This review and generalized framework highlight the likely generality of such resource effects in natural systems and point to opportunities ripe for future empirical and theoretical work.

     
    more » « less
  8. Abstract Background and aims

    A synergistic response of aboveground plant biomass production to combined nitrogen (N) and phosphorus (P) addition has been observed in many ecosystems, but the underlying mechanisms and their relative importance are not well known. We aimed at evaluating several mechanisms that could potentially cause the synergistic growth response, such as changes in plant biomass allocation, increased N and P uptake by plants, and enhanced ecosystem nutrient retention.

    Methods

    We studied five grasslands located in Europe and the USA that are subjected to an element addition experiment composed of four treatments: control (no element addition), N addition, P addition, combined NP addition.

    Results

    Combined NP addition increased the total plant N stocks by 1.47 times compared to the N treatment, while total plant P stocks were 1.62 times higher in NP than in single P addition. Further, higher N uptake by plants in response to combined NP addition was associated with reduced N losses from the soil (evaluated based on soil δ15N) compared to N addition alone, indicating a higher ecosystem N retention. In contrast, the synergistic growth response was not associated with significant changes in plant resource allocation.

    Conclusions

    Our results demonstrate that the commonly observed synergistic effect of NP addition on aboveground biomass production in grasslands is caused by enhanced N uptake compared to single N addition, and increased P uptake compared to single P addition, which is associated with a higher N and P retention in the ecosystem.

     
    more » « less
  9. Abstract Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024